14,475 research outputs found

    The spectroscopic orbits and the geometrical configuration of the symbiotic binary AR Pavonis

    Get PDF
    We analyze optical and near infrared spectra of intermediate and high resolution of the eclipsing symbiotic system AR Pavonis. We have obtained the radial velocity curves for the red and the hot component from the M-giant absorption lines and from the wings of Halpha, H and He II4686 emission profiles, respectively. From the orbital elements we have derived the masses, Mgiant=2.5 and Mhot =1.0 solar masses, for the red giant and the hot component, respectively. We also present and discuss radial velocity patterns in the blue cF absorption spectrum as well as various emission lines. In particular, we confirm that the blue absorption lines are associated with the hot component. The radial velocity curve of the blue absorption system, however, does not track the hot companion's orbital motion in a straightforward way, and its departures from an expected circular orbit are particularly strong when the hot component is active. We suggest that the cF-type absorption system is formed in material streaming from the giant presumably in a region where the stream encounters an accretion disk or an extended envelope around the hot component. The broad emission wings originate from the inner accretion disk or the envelope around the hot star.We also suggest that the central absorption in H profiles is formed in a neutral portion of the cool giant's wind which is strongly concentrated towards the orbital plane. The nebula in AR Pav seems to be bounded by significant amount of neutral material in the orbital plane. The forbidden emission lines are probably formed in low density ionized regions extended in polar directions and/or the wind-wind interaction zone.Comment: 12 pages, 5 figures, accepted by A&

    Gluon Vortices and Induced Magnetic Field in Compact Stars

    Full text link
    The natural candidates for the realization of color superconductivity are the extremely dense cores of compact stars, many of which have very large magnetic fields, especially the so-called magnetars. In this paper we discuss how a color superconducting core can serve to generate and enhance the stellar magnetic field without appealing to a magnetohydrodynamic dynamo mechanism.Comment: To appear in the Proceedings of the VII Latin American Symposium on Nuclear Physics and Applications. Cusco (Peru) June 200

    On the exposure to mobile phone radiation in trains

    Get PDF
    This report presents theoretical estimates of the Power Density levels which may be reached inside trains. Two possible sources of high levels of radiation are discussed. The first one arises since the walls of the wagons are metallic and therefore bounce back almost all radiation impinging on them. The second is due to the simultaneous emission of a seemingly large number of nearby telephones. The theoretical study presented here shows that Power Densities stay at values below reference levels always.Comment: 9 pages, 1 figur
    • …
    corecore